Recent Blog

Product Design
01 Dec 2015
2

Every product must comply with a number of functional requirements or it isn’t a product, it is simply a useless object, trash or in some…

Integrated Design Systems: Small, but Mighty
20 Apr 2015
2

Flexibility and a willingness to adapt to changing circumstances will enable smaller industrial design firms to succeed when the economy is sluggish. “Small industrial design…

Color and Graphic Design
20 Apr 2015
11

When engineers and rotational molders refer to design they are typically thinking about how the part will be molded or how it will perform after…

23Nov

Future Trends ( written in 1996)

The year is 2020. Materials and manufacturing technologies came a long way in the last century, but in the past two decades, the advancements have truly liberated the industrial designer. In particular, there have been significant strides taken in tool making, processing equipment and high-performance resins. Let’s review the radical developments of the past 25 years and look at four examples of their application.

Pressure to decrease tooling lead times inspired companies to experiment with stereolithography technology in mold making. For processing equipment, more design controls and modularity improved quality thermoplastic cyclic polyester reactive resins revolutionized very large low-pressure composite molding. As military and aerospace markets dwindled, composite manufacturing methods found commercial markets. New materials and reinforcements translated into more cost-effective manufacturing processes. Composite metals, plastics and ceramics improved product design while combinations of lightweight carbon and boron fibers with plastics yielded materials with physical properties unmatched by any natural material.

Processes such as resin transfer molding and pultrusion eliminated much of the labor associated with composites. To improve overall performance, coaling materials ranging from sand to diamonds were combined with different substrate materials through innovative techniques such as vacuum deposition, microwave plasma deposition, sputtering, arc spray coating and ion implantation. The result improved hardness, scratch resistance, corrosion resistance, sound absorption, multiple colors, abrasion resistance and biochemical compatibility. The demand for high performance materials in semiconductors, insulators and high-temperature materials led to the refinement of ceramic materials and manufacturing processes.

Improvements in processing resulted in ceramics derived from silicon nitride and boron nitride, which were coextruded within a polyethylene copolymer compound. The resulting filaments were sintered into extremely strong materials used as reinforcements for metals and plastics. Other processing methods included gel casting and sintering, but the most exciting innovations came out of the discovery in 1986 that a metal oxide rather than pure metal could be used to achieve superconductivity at much higher temperatures than thought possible. This, and subsequent compounds based on yttrium barium cuprate, paved the way for smaller and more efficient motors and electronic devices. These new materials and processes also led to the refinement of free-form fabrication technology, which was commercially introduced in 1987 with the presentation of stereolithography.

The new century brought new techniques based on the use of different plastics, metal powders, ceramics and even composites to expand the size and selection of parts. Other methods included solid ground curing, selective laser sintering, laminated object manufacturing, design-controlled automated fabrication, solid creation system, solid object ultraviolet laser plotting, ballistic particle manufacturing, printed computer tomography, shape melting and three-dimensional printing.

Products quickly incorporated this new knowledge to the point where free-form fabrication was routinely used in everything from appliances to replacement human body parts. Although the laser is common to all variations, materials and techniques vary widely. No longer are industrial designers limited to one material or solid walled shapes. To illustrate the paradigm shift that has resulted as these innovations opened new doors, let’s look at four 21st-century products.

Mowfinal

In 2015, KTX Associates introduced the lawn Tank, the first self-powered robot lawn mower. This design expressed innovative use of material and manufacturing breakthroughs. The design team cleverly interpreted the mower with features common to military tanks. This reference suggested durability and provided functional benefits. Low profile electric motors of superconductive ceramic coils contribute to the low-profile appearance and high operating efficiency. One motor drives the rotor while the two stepper motors govern the mower. Built-in sensors guide the device around the lawn. An exterior photosensitive coating converts sunlight to electric energy, and batteries based on lead-coated glass mats form a recyclable plastic module, which continually recharges. This honeycombed modular structure of carbon reinforced nylon 6/6 acts as a support bridge. Designers used Helisys-laminated object manufacturing methods to form these complex shapes. Composite graphite/polyester molding compounds result in a lightweight, rigid deck.

Comfinal

Instant success greeted the wall-hung home computer from Somex in 2018. Its Industrial design teams redefined the computer to integrate with electrical devices throughout the home. Operated by voice or touch, the unit uses infrared and spread spectrum technology to communicate with or replace peripherals such as televisions, stereos, telephones, timers and surveillance equipment. The lightweight thin curved form features a variety of coatings, each for a specific purpose. Polyaniline, for example, will convert passive surface interactive displays, controls and keypads. Application of photosensitive silicon to other surfaces converts light into electric power. Santex’s solid creation system formed the smart composite modules that can be plugged into the main body for added functionality. Microchips and circuitry are directly implanted into the main body of the computer. The unit’s high efficiency and solar-powered coatings let it run indefinitely on long life batteries.

Wasfinal

Magna introduced the ultrasonic clothes washer in 2012, a major departure from the bulky washers of the previous 80 years. Its piezoelectric spheres wash clothes by shaking off all dirt, using less than two galIons of water and special detergents. The same ultrasonic energy dries clothes after pumping out dirty water. By eliminating a rotary wash basin, the design team could achieve a flatter, more compact shape. Composite materials give the compact washer rigidity, light weight and free forms not easily achieved with stamped steel. A thermoplastIc elastomenc gasket forms a watertight seal all around the front door, which features polyaniline LED coatings to let users program the washing conditions. A diamond-coated polycarbonate blow-molded door permits total access to the wash chamber while providing a watertight seal and high visibility.

Sawfinal

Lightweight, portable and durable were some of the adjectives for a table saw introduced by SaWell in 2012. The Alpha power tool division creatively applied new materials and manufacturing processes to a lightweight portable table saw that redefined design for the power tool industry by replacing massive and bulky forms with efficient shapes. The saw’s highly efficient compact 5 hp motor, made possible by superconductive wires, shares a tiltable housing with the saw blade. A stepper motor drive system controls blade tilt from a front control panel that uses an electroluminescent display. Built-in rotary and linear capacitive sensors determine precise blade angle and fence distance. Boron nitride rods embedded in a clear, diamond-coated polycarbonate leaf provide a very rigId lightweight surface. Fold-down panels, created in three-dimensional printing technology pioneered by MIT in 1995, and double-shot injection molded foldout legs, molded in bright colors around a carbon-graphite core, provide rigidity, lightweight and strength. Visually bold and colorful rubber feet dampen vibration and add stability during use. The unit folds into a 4- thick case for easy transport.

This brief glimpse of major developments in materials and processes during the past 25 years offers insight into the creative designs introduced by industrial designers who took advantage of the technology.

What do we have to look forward to? Within the next 25 years, we may be genetically designing products, colonizing distant planets and living under the sea. Industrial designers can look forward to a time when products will have no specific top and bottom orientation. We will design for a three dimensional environment where ecosystems, materials, societies and life will be carefully managed in order to sustain themselves. New materials will be fabricated from solar energy living organisms may be designed to work in conjunction with inorganic objects as a routine part of our exciting designs. The only limit IS our imagination.

2 Comments

Leave a Comment

Your email address will not be published. Required fields are marked *

Award & recognitions

Testimonials

Experts in transforming your ideas into reality – Designing products from concepts to mass production

From the Blog – Insights Into Our Design Process and Philosophy